Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Intervalo de año de publicación
1.
Acta Cir Bras ; 39: e390924, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38324802

RESUMEN

PURPOSE: Osteoarthritis (OA) is a degenerative joint disease which is categorized via destruction of joint cartilage and it also affects the various joints, especially knees and hips. Sinomenine active phytoconstituents isolated from the stem of Sinomenium acutum and already proof anti-inflammatory effect against the arthritis model of rodent. In this experimental protocol, we scrutinized the anti-osteoarthritis effect of sinomenine against monosodium iodoacetate (MIA) induced OA in rats. METHODS: MIA (3 mg/50 µL) was used for inducing the OA in the rats, and rats received the oral administration of sinomenine (2.5, 5 and 7.5 mg/kg body weight) up to the end of the experimental study (four weeks). The body and organs weight were estimated. Aggrecan, C-terminal cross-linked telopeptide of type II collagen (CTX-II), glycosaminoglycans (GCGs), monocyte chemoattractant protein-1 (MCP-1), Interferon gamma (IFN-γ), antioxidant, inflammatory cytokines, inflammatory mediators and matrix metalloproteinases (MMP) were analyzed. RESULTS: Sinomenine significantly (P < 0.001) boosted the body weight and reduced the heart weight, but the weight of spleen and kidney remain unchanged. Sinomenine significantly (P < 0.001) reduced the level of nitric oxide, MCP-1 and improved the level of aggrecan, IFN-γ and GCGs. Sinomenine remarkably upregulated the level of glutathione, superoxide dismutase and suppressed the level of malonaldehyde. It effectually modulated the level of inflammatory cytokines and inflammatory mediators and significantly (P < 0.001) reduced the level of MMPs, like MMP-1, 2, 3, 9 and 13. CONCLUSIONS: Sinomenine is a beneficial active agent for the treatment of OA disease.


Asunto(s)
Cartílago Articular , Morfinanos , Osteoartritis , Ratas , Animales , Ácido Yodoacético/metabolismo , Ácido Yodoacético/farmacología , Osteoartritis/metabolismo , Agrecanos/metabolismo , Agrecanos/farmacología , Modelos Animales de Enfermedad , Cartílago Articular/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Peso Corporal
2.
Acta cir. bras ; 39: e390924, 2024. graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1533354

RESUMEN

Purpose: Osteoarthritis (OA) is a degenerative joint disease which is categorized via destruction of joint cartilage and it also affects the various joints, especially knees and hips. Sinomenine active phytoconstituents isolated from the stem of Sinomenium acutum and already proof anti-inflammatory effect against the arthritis model of rodent. In this experimental protocol, we scrutinized the anti-osteoarthritis effect of sinomenine against monosodium iodoacetate (MIA) induced OA in rats. Methods: MIA (3 mg/50 µL) was used for inducing the OA in the rats, and rats received the oral administration of sinomenine (2.5, 5 and 7.5 mg/kg body weight) up to the end of the experimental study (four weeks). The body and organs weight were estimated. Aggrecan, C-terminal cross-linked telopeptide of type II collagen (CTX-II), glycosaminoglycans (GCGs), monocyte chemoattractant protein-1 (MCP-1), Interferon gamma (IFN-γ), antioxidant, inflammatory cytokines, inflammatory mediators and matrix metalloproteinases (MMP) were analyzed. Results: Sinomenine significantly (P < 0.001) boosted the body weight and reduced the heart weight, but the weight of spleen and kidney remain unchanged. Sinomenine significantly (P < 0.001) reduced the level of nitric oxide, MCP-1 and improved the level of aggrecan, IFN-γ and GCGs. Sinomenine remarkably upregulated the level of glutathione, superoxide dismutase and suppressed the level of malonaldehyde. It effectually modulated the level of inflammatory cytokines and inflammatory mediators and significantly (P < 0.001) reduced the level of MMPs, like MMP-1, 2, 3, 9 and 13. Conclusions: Sinomenine is a beneficial active agent for the treatment of OA disease.


Asunto(s)
Animales , Ratas , Osteoartritis , Ácido Yodoacético , Lesiones de la Cadera , Inflamación , Traumatismos de la Rodilla
3.
ACS Nano ; 18(1): 1013-1021, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38147457

RESUMEN

Kagome antiferromagnetic semimetals such as Mn3Sn have attracted extensive attention for their potential application in antiferromagnetic spintronics. Realizing high manipulation of kagome antiferromagnetic spin states at room temperature can reveal rich emergent phenomena resulting from the quantum interactions between topology, spin, and correlation. Here, we achieved tunable spin textures of Mn3Sn through symmetry design by controlling alternate Mn3Sn and heavy-metal Pt thicknesses. The various topological spin textures were predicted with theoretical simulations, and the skyrmion-induced topological Hall effect, strong spin-dependent scattering, and vertical gradient of spin states were obtained by magnetotransport and magnetic circular dichroism (MCD) spectroscopy measurements in Mn3Sn/Pt heterostructures. Our work provides an effective strategy for the innovative design of topological antiferromagnetic spintronic devices.

4.
Adv Mater ; 35(51): e2303688, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37890473

RESUMEN

The emerging wide varieties of the van der Waals (vdW) magnets with atomically thin and smooth interfaces hold great promise for next-generation spintronic devices. However, due to the lower Curie temperature of the vdW ferromagnets than room temperature, electrically manipulating its magnetization at room temperature has not been realized. In this work, it is demonstrated that the perpendicular magnetization of the vdW ferromagnet Fe3 GaTe2 can be effectively switched at room temperature in the Fe3 GaTe2 /Pt bilayer by spin-orbit torques (SOTs) with a relatively low current density of 1.3 × 107 A cm-2 . Moreover, the high SOT efficiency of ξDL ≈ 0.28 is quantitatively determined by harmonic measurements, which is higher than those in Pt-based heavy metal/conventional ferromagnet devices. The findings of room-temperature vdW ferromagnet switching by SOTs provide a significant basis for the development of vdW-ferromagnet-based spintronic applications.

5.
Nat Commun ; 14(1): 5371, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37666843

RESUMEN

Magnetic tunnel junctions (MTJs) with conventional bulk ferromagnets separated by a nonmagnetic insulating layer are key building blocks in spintronics for magnetic sensors and memory. A radically different approach of using atomically-thin van der Waals (vdW) materials in MTJs is expected to boost their figure of merit, the tunneling magnetoresistance (TMR), while relaxing the lattice-matching requirements from the epitaxial growth and supporting high-quality integration of dissimilar materials with atomically-sharp interfaces. We report TMR up to 192% at 10 K in all-vdW Fe3GeTe2/GaSe/Fe3GeTe2 MTJs. Remarkably, instead of the usual insulating spacer, this large TMR is realized with a vdW semiconductor GaSe. Integration of semiconductors into the MTJs offers energy-band-tunability, bias dependence, magnetic proximity effects, and spin-dependent optical-selection rules. We demonstrate that not only the magnitude of the TMR is tuned by the semiconductor thickness but also the TMR sign can be reversed by varying the bias voltages, enabling modulation of highly spin-polarized carriers in vdW semiconductors.

6.
Natl Sci Rev ; 10(10): nwad093, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37671323

RESUMEN

Versatile memory is strongly desired for end users, to protect their information in the information era. In particular, bit-level switchable memory that can be switched from rewritable to read-only function would allow end users to prevent important data being tampered with. However, no such switchable memory has been reported. We demonstrate that the rewritable function can be converted into read-only function by applying a sufficiently large current pulse in a U-shaped domain-wall memory, which comprises an asymmetric Pt/Co/Ru/AlOx heterostructure with strong Dzyaloshinskii-Moriya interaction. Wafer-scale switchable magnetic domain-wall memory arrays on 4-inch Si/SiO2 substrate are demonstrated. Furthermore, we confirm that the information can be stored in rewritable or read-only states at bit level according to the security needs of end users. Our work not only provides a solution for personal confidential data, but also paves the way for developing multifunctional spintronic devices.

7.
Natl Sci Rev ; 10(2): nwac154, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36872930

RESUMEN

Non-collinear antiferromagnetic Weyl semimetals, combining the advantages of a zero stray field and ultrafast spin dynamics, as well as a large anomalous Hall effect and the chiral anomaly of Weyl fermions, have attracted extensive interest. However, the all-electrical control of such systems at room temperature, a crucial step toward practical application, has not been reported. Here, using a small writing current density of around 5 × 106 A·cm-2, we realize the all-electrical current-induced deterministic switching of the non-collinear antiferromagnet Mn3Sn, with a strong readout signal at room temperature in the Si/SiO2/Mn3Sn/AlOx structure, and without external magnetic field or injected spin current. Our simulations reveal that the switching originates from the current-induced intrinsic non-collinear spin-orbit torques in Mn3Sn itself. Our findings pave the way for the development of topological antiferromagnetic spintronics.

8.
Adv Mater ; 35(26): e2211634, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36951756

RESUMEN

Topologically protected magnetic "whirls" such as skyrmions in antiferromagnetic materials have recently attracted extensive interest due to their nontrivial band topology and potential application in antiferromagnetic spintronics. However, room-temperature skyrmions in natural metallic antiferromagnetic materials with merit of probable convenient electrical manipulation have not been reported. Here, room-temperature skyrmions are realized in a non-collinear antiferromagnet, Mn3 Sn, capped with a Pt overlayer. The evolution of spin textures from coplanar inverted triangular structures to Bloch-type skyrmions is achieved via tuning the magnitude of interfacial Dzyaloshinskii-Moriya interaction. Beyond that, the temperature can induce an unconventional transition from skyrmions to antiferromagnetic meron-like spin textures at ≈220 K in the Mn3 Sn/Pt samples. Combining with the theoretical calculations, it is found that the transition originates from the temperature dependence of antiferromagnetic exchange interaction between kagome sublayers within the Mn3 Sn crystalline unit-cell. These findings open the avenue for the development of topological spin-swirling-based antiferromagnetic spintronics.

9.
Adv Mater ; 33(51): e2104658, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34642998

RESUMEN

2D layered chalcogenide semiconductors have been proposed as a promising class of materials for low-dimensional electronic, optoelectronic, and spintronic devices. Here, all-2D van der Waals vertical spin-valve devices, that combine the 2D layered semiconductor InSe as a spacer with the 2D layered ferromagnetic metal Fe3 GeTe2 as spin injection and detection electrodes, are reported. Two distinct transport behaviors are observed: tunneling and metallic, which are assigned to the formation of a pinhole-free tunnel barrier at the Fe3 GeTe2 /InSe interface and pinholes in the InSe spacer layer, respectively. For the tunneling device, a large magnetoresistance (MR) of 41% is obtained under an applied bias current of 0.1 µA at 10 K, which is about three times larger than that of the metallic device. Moreover, the tunneling device exhibits a lower operating bias current but a more sensitive bias current dependence than the metallic device. The MR and spin polarization of both the metallic and tunneling devices decrease with increasing temperature, which can be fitted well by Bloch's law. These findings reveal the critical role of pinholes in the MR of all-2D van der Waals ferromagnet/semiconductor heterojunction devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...